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1 Introduction

Basic tasks in autonomous robot navigation are localization and positioning. Localization is the

act of recognizing the environment, that is, assigning consistent labels to different locations, and
positioning is the act of computing the coordinates of the robot in the environment. Positioning
is a task complementary to localization, in the sense that position (e.g., -1.5 meters northwest
of table T") is often specified in a place-specific coordinate system ("in room 911"). In this

paper we suggest a method of both localization and positioning using vision alone. A variant
of the positioning problem, referred to as repositioning, involving the return to a previously
visited place is also discussed.

Previous studies have examined the problems of localization and positioning under a variety
of conditions, defined by the kind of sensor(s) employed, the nature of the environment, and
the representations used. We can distinguish between active and passive sensing. indoor and
outdoor navigation tasks, and metric and topological representations. The metric approach
attempts to utilize a detailed geometric description of the environment, while the topological
approach uses a more qualitative description including a graph with nodes representing places
and arcs representing sequences of actions that would result in moving the robot from one node

to another.

In the paper we consider a robot that uses a passive sensor, vision, in an indoor environment.
The environment cannot be changed by the robot to improve its performance; neither beacons
nor floor or wall markings are employed. The paper addresses both the localization and tile
positioning problems. Solutions to these problems are presented based on object recognition
techniques. The method, based on the linear combinations scheme of [171, represents scenes
by sets of their 2D images. Localization is achieved by comparing the observed image to
linear combinations of model views, and the position of the robot is computed by analyzing
the coefficients of the linear combination that aligns the model to the image. Also, a simple,
"-qualitative" solution to the repositioning problem using the linear combinations scheme is
presented.

The rest of the paper is organized as follows. The next section describes the localization and
positioning problems and surveys previous solutions. The method of localization and positioning
using linear combinations of model views is described in Section 3. The method assumes weak

perspective projection. An iterative scheme to account for perspective distortions is presented
in Section 4. An analysis of the error resulting from the projection assumption is presented in
Section 5. Constraints imposed on the motion of the robot as a result of special properties of
indoor environments can be used to reduce the complexity of the method presented here. This
topic is covered on Section 6. Experimental results follow. Accesion For
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2 The Problem

Localization and positioning from visual input are defined in the following way: Given a fa-

miliar environment, identify the observed environment, and then find your position in that
environment. Localization resembles the task of object recognition, with objects replaced by
scenes. Once localization is accomplished, positioning can be performed.

One problem a system for localization and positioning should address is the variability of
images due to viewpoint changes. The inexactness of practical systems makes it difficult for a
robot to return to a specified position on subsequent visits. The visual data available to the
robot between visits varies in accordance with the viewing position of the robot. A localization
system should be able to recognize scenes from different positions and orientations.

Another problem is that of changes in the scene. At subsequent visits the same place ma%

look different due to changes in the arrangement of the objects, the introduction of new objects.

and the removal of others. In general, some objects tend to be more static than others. While
chairs and books are often moved, tables, closets, and pictures tend to change their position
much less, and walls are almost guaranteed to be static. Static cues naturally are more reliable
than mobile ones. Confining the system to static cues, however, may in some cases result inI
failure to recognize the scene due to insufficient cues. The system should therefore attempt to

rely on static cues, but should not ignore the dynamic cues.

Solutions to the problem of localization from visual data require a large memory and heavy

computation. Existing systems often try to reduce this cost by using sparse representations

and by exploiting contextual information. Sparse representations are introduced in [10. 14].
Mataric [10] represents scenes as sequences of landmarks (such as walls, doors. etc.) extracted
by tracing the boundaries of the scene using a sonar and a compass. Metric information of

and between the landmarks is not stored. Sarachik [14] recognizes a room by its dimensions,
which are measured by identifying and locating the top corners of the room using stereo data

(obtained from four cameras). In both cases the representation is very sparse, and the scene is
therefore often ambiguous.

Richer representations are used in [2, 4] where higher success rates are reported. Braunegg

(21 represents the scene by an occupancy table. a 2D bit array which contains a I at every
location occupied by some object. The table is constructed by taking stereo pictures covering

3600 from the middle of the room and projecting the obtained 3D data onto the floor. The

method suffers from loss of information due to the projection onto the floor.

Engelson et al. 14] represent the scene by a set of invariant -signatures". A signature is
usually composed of low-resolution gray-level or range data obtained by blurring an image. A

set of signatures taken from different viewpoints are stored. A scene is recognized if the robot

encounters a signature similar to one of the stored signatures.

Systems that use the full information provided by the image (e.g., [6, 12]) usually rely
omi contextual information to avoid scanning all the models in the memory and to reduce the

computational cost of comparing a model to the image. The system follows a predetermined
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path, so that the identity of each visited location is known in advance, and localization becomes
a verification problem. Path continuity in many cases is essential, and the so-called -drop-off"
problem is not addressed. The emphasis in these systems is on positioning, which is used to
keep the robot on the path. It is typical for these systems (e.g., [5, 6, 12]) to use a full 3D
model of the environment.

Onoguchi et al. [12], among others, represent the environment by a set of landmarks selected
from pairs of stereo images by a human operator. These landmarks are transformed by an image
processing program which is designed so as to identify the specific landmark using specific
extraction instructions (such as what features to look for and at what locations). Localization
is achieved by applying the extraction procedure specified for the next landmark. Once a
landmark is identified, the position of the robot relative to that landmark is determined by
comparing the dimensions of the observed landmark with those of the stored model.

The method presented in this paper represents the environment using a set of edge maps.
Localization and positioning are achieved by comparing images of the environment to linear
combinations of the model views. The method uses rich visual information to represent the
scene. The system is flexible. In many cases it is capable of recognizing its location from
one image only (360' coverage is not required). When one image is not sufficient, additional
images can be acquired to solve the localization problem. Context can be used to determine
the order of comparison of the models to the observed image and to increase the confidence of
a given match. but context is not essential: the system can also, by performing more extensive
computations. solve the "'drop-off" problem.

3 The Method

The problems of localization and object recognition are similar in many ways. Both problems
require the matching of visual images to stored models, either of the environment or of the
observed objects. Both problems face similar difficulties, such as varying illumination conditions
aid changes iii appearance due to viewpoint changes. Similar methodologies therefore can be
used for solving both problems.

A particular application of an object recognition scheme, the Linear Combinations (LC)
scheme [17]. to the problems of localization and positioning is discussed below. The environment
i., represented iM thi.s scheiie by a small !et of views obtained from different viewpoints and by
the correspondence between the views. A novel view is recognized by comparing it to linear
combinations of the stored views. Positioning is achieved by recovering the position of the
camera relative to its position in the niodel views from the coefficients of the aligning linear
combination. In the rest of this section we review the linear combinations approach and describe
it, applicatiomi to both Ilocalization and positioning. The section concludes with a solution to
tle problein of repositioning. that is. the probleni of returning to a previously visited position
by "-locking" into an image acquired lin that position.
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3.1 Localization

The problem of localization is defined as follows: given P, a 2D image of a place, and M., a set of
stored models, find a model M' E M such that P matches M'. Localization is the recognition
of a place. It can therefore potentially benefit from using an object recognition methodology.
A common approach to handling the problem of recognition from different viewpoints is by
comparing the stored models to the observed environment after the viewpoint is recovered and
compensated for. This approach, called alignment, is used in a number of studies of object
recognition [1, 7, 8, 9, 15, i6]. We apply the alignment approach to the problem of localization.
The system described below uses the "Linear Combinations" (LC) scheme, which was suggested
by Ullman and Basri [17].

We begin with a brief review of the LC scheme. LC is defined as follows. Given an image. we
construct two view vectors from the feature points in the image, one contains the x-coordinates
of the points, and the other contains the y-coordinates of the points. An object (in our case,
the environment) is modeled by a set of such views, where the points in these views are ordered
in correspondence. The appearance of a novel view of the object is predicted by applying
linear combinations to the stored views. The predicted appearance is then compared with the
actual image, and the object is recognized if the two match. The advantage of this method
is twofold. First, viewer-centered representations are used rather than object-centered ones,
namely. models are composed of 2D views of the observed scene; second, novel appearances are
predicted in a simple and accurate way (under weak perspective projection).

Formally, given P, a 2D image of a scene, and M. a set of stored models, the objective is to
find a model M' E Jl such that p = r o a3 .41 for some constants a. E R. It has been shown
that this scheme accurately predicts the appearance of rigid objects under weak perspective
projection (orthographic projection and scale). The limitations of this projection model are
discussed later in this paper.

More concretely. let p, = (x, y,. z,). 1 < I < n. be a set of n object points. Under weak
perspective projection. the position p, = (x',,') of these points in the image are given by

x, = srljx, + sr12Y, + sr1 3.-, + t.

t = sr 2lzi + sr 22Y, + sr 23z, + t1, (1)

where r,, are the components of a 3 x 3 rotation matrix, and s is a scale factor. Rewriting this
iii vector equation form we obtain

X = ;rllx + Xrlr 2 y + srl3Z + trl

y' = sr 2 lX + sr 22 y + sr 23 Z + tyl (2)

where xyz.x',y' E R' are the vectors of X,. y'. :a. z, and y' coordinates respectively. and
1 = (1,1.1). Consequently.

X',y' E span{x,y.z. 11 (3)
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or, in other words, x' and y' belong to a four-dimensional linear subspace of R'V. (Notice that
z'. the vector of depth coordinates of the projected points, also belongs to this subspace. This
fact is used in Section 4 below.) A four-dimensional space is spanned by any four linearly
independent vectors of the space. Two views of the scene supply four such vectors [13, 17].
Denote by x 1, y, and X2 , Y2 the location vectors of the n points in the two images; then there
exist coefficients a1,a 2,a 3.a 4 and b1,b2,b3,b4 such that

x = aIxl + a2yI + a3x2 + a41

y' = bixi +b2YI +b 3x 2 +6 41 (4)

(Note that the vector Y2 already depends on the other four vectors.) Since R is a rotation
matrix, the coefficients satisfy the following two quadratic constraints:

'+ 2+ -- b - b- = 2(b1b3 - aIa 3 )rlT + 2(b 2 b3 - a2a3)rT2

a lb, + a 2b2 + a 3 b3 + (alb 3 + a3 b1 )r1 1 + (a2b3 + a 3 b2 )rl2 = 0 (5)

To derive these constraints the transformation between the two model views should be recovered.
This can be done under weak perspective using a third image. Alternatively. the constraints
can be ignored, in which case the system would confuse rigid transformations with affine ones.
This usually does not prevent successful localization since generally scenes are fairly different
from one another.

A LC scheme for the problem of localization is as follows: The environment is modeled
bv a set of images with correspondence between the images. For example, a spot can be
modeled by two of its corresponding views. The corresponding quadratic constraints may also
be stored. Localization is achieved by recovering the linear combination that aligns the model
to the observed image. The coefficients are determined using four model points and their
corresponding image points by solving a linear set of equations. Three points are sufficient to
determine the coefficients if the quadratic constraints are also considered. Additional points
may be used to reduce the effect of noise.

The LC scheme uses viewer-centered models. that is. representations that are composed
of images. It has a number of advantages over methods that build full three-dimensional
models to represent the scene. First. by using viewer-centered models that cover relatively small
transformations we avoid the need to handle occlusions in the scene. If from some viewpoints
the scene appears different because of occlusions we utilize a new model for these viewpoints.
Second. viewer-centered models are easier to build and to maintain than object-centered ones.
The models contain only images and correspondences. By limiting the transformation between
the model images one can find the correspondence using motion methods. If large portions of
the environment are changed between visits a new model can be constructed by simply replacing
old images with new ones.

One problem with using the LC scheme for localization is due to the weak perspective ap-
proximation. In contrast with the problem of object recognition. where we can generally assume
that objects are small relative to their distance from the camera, in localization the environ-
ment surrounds the robot and perspective distortions cannot be neglected. The limitations



of weak perspective modeling are discussed both mathematically and empirically in the next

two sections. It is shown that in many practical cases weak perspective is sufficient to enable
accurate localization. The main reason is that the problem of localization does not require
accurate measurements in the entire image; it only requires identifying a sufficient number of
spots to guarantee accurate naming. If these spots are relatively close to the center of the
image, or if the depth differences they create are relatively small (as in the case of looking at
a wall when the line of sight is nearly perpendicular to the wall), the perspective distortions
are relatively small, and the system can identify the scene with high accuracy. Also, views
related by a translation parallel to the image plane form a linear space even when perspective
distortions are large. This case and other simplifications are discussed in Section 6.

By using weak perspective we avoid stability problems that frequently occur in perspective
computations. We can therefore compute the alignment coefficients by looking at a relatively
narrow field of view. The entire scheme can be viewed as an accumulative process. Rather than
acquiring images of the entire scene and comparing them all to a full scene model (as in [2])
we recognize the scene image by image, spot by spot, until we accumulate sufficient convincing
information that indicates the identity of the place.

When perspective distortions are relatively large and weak perspective is insufficient to
model the environment, two approaches can be used. One possibility is to construct a larger
number of models so as to keep the possible changes between the familiar and the novel views
small. Alternatively. an iterative computation can be applied to compensate for these distor-

tions. Such an iterative method is described in Section 4.

3.2 Positioning

Positioning is the problem of recovering the exact position of the robot. This position can be
specified in a fixed coordinate system associated with the environment (i.e., room coordinates).
or it can be associated with some model. in which case location is expressed with respect to the

position from which the model views were acquired. In this section we discuss an application
of the LC scheme to the positioning problem.

The idea is the following. We assume a model composed of two images, P1 and P2; their
relative position is given. Given a novel image P'. we first align the model with the image
I I.e., localization). By considering the coefficients of the linear combination the robot's position
relative to the model images is recovered. To recover the absolute position of the robot in the
ioom the absolute positions of the niodel views should also be provided.

Assuming P2 is obtained from P1 by a rotation R, translation t = (t, ti), and scaling s, the
coordinates of a point in P', (x', y'). call be written as linear combinations of the corresponding
model points in the following way:

x = azx" + a 2Y + a3X2 + a 4

Y = bix, + b2 Yl + b3 X2 + b4  (6)

6



Substituting for X2 we obtain

x' = aix1 + a 2 y, + a3 (sr1 l-T + Srl2YI + sr 13ZI + tx) + a4

y' = bix, + b2y1 + b3 (srllz + sr 12 yl + sr1 3zI + tr) + b4  (7)

and rearranging these equations we obtain

x = (a, + a 3 srll)xl + (a2 + a 3 sr, 2 )yl + (a 3 srl 3 )zi'+ (a3t, + a 4 )
y = (b, + b3 srll)xl + (b 2 + b 3srl 2 )YI + (b3 srl 3 )zI + (b 3 t.- + a 4 ) (8)

Using these equations we can derive all the parameters of the transformation between the model
and the image. Assume the image is obtained by a rotation U, translation 1., and scaling s,,.
Using the orthonormality constraint we can first derive the scale factor

s2 = (al + a 3 srll)2 + (a 2 + a 3 sr 1 2 )2 + (a 3 sr 1 3 )2
•n

= +a + a2s2 + 2a 3s(arlI + a2 r2 ) (9)

From Equations (8) and (9). by deriving the components of the translation vector. t,,. we can

obtain the position of the robot in the image relative to its position in the model views:

Ax -= a3t1 + a4

Ay = b3 tv + b4  (10)

Note that A: is derived from the change in scale of the object. The rotation matrix U between
P1 and P' is given by

a, + a 3sr$l a2 + a 3 srl 2  a3srx3Ull - 12 = 1013 -

%n Sn Sn

b, + a 3 sr 21  b2 + a 3 sr22  b3 sr 2 3  (11)
U2 1 = 122 = 1123 =

nS

As was already mentioned, the position of the robot is computed here relative to the position of
the camera when the first model image. P1 , was acquired. -Az and AZ represent the motion of
the robot from P1 to P'. and the rest of the parameters represent its 3D rotation and elevation.
To obtain the relative position the transformation parameters between the model views. Pj and

P 2 . are required.

3.3 Repositioning

Aln interesting variant of the positioning problem, referred to as repositioning, is defined as
follows. Given an image. called the target image. position yourself in the location from which



this image was observed. ' One way to solve this problem is to extract the exact position from
which the target image was obtained and direct the robot to that position. In this section we
are interested in a more qualitative approach. Under this approach position is not computed.
Instead, the robot observes the environment and extracts only the direction to the target
location. Unlike the exact approach, the method presented here does not require the recovery
of the transformation between the model views.

We assume we are given with a model of the environment together with a target image.
The robot is allowed to take new images as it is moving towards the target. We assume a
horizontally moving platform. (In other words, we assume three degrees of freedom rather than
six; the robot is allowed to rotate around the vertical axis and translate horizontally. The
validity of this constraint is discussed in Section 6.) Below we give a simple computation that
determines a path which terminates in the target location. At each time step the robot acquires
a new image and aligns it with the model. By comparing the alignment coefficients with the
coefficients for the target image the robot determines its next step. The algorithm is divided
into two stages. In the first stage the robot fixates on one identifiable point and moves along
a circular path around the fixation point until the line of sight to this point coincides with
the line of sight to the corresponding point in the target image. In the second stage the robot
advances forward or retreats backward until it reaches the target location.

Given a model composed of two images, P1 and P2 , P2 is obtained from P1 by a rotation
about the Y-axis by an angle o. horizontal translation tl, and scale factor s. Given a target
image P,. Pt is obtained from P1 by a similar rotation by an angle 0, translation tj. and scale
Žt- Using Eq. (4) the position of a target point (xt,yt) can be expressed as

.rt =alix1 + a3.X2 + a.4

Yt= b2yl (12)

(The rest of the coefficients are zero since the platform moves horizontally.) In fact, the coeffi-
cients are given by

stsin(o - 0)

a = st sill 0
a3  = (13)

s sill a
trst sin a

(L 4  s sin o
b2 = st

(The derivation is given in the Appendix.)

At every time step the robot acquires an image and aligns it with the above model. Assume
that image Pp is obtained as a result of a rotation by an angle o. translation t . and scale Sp.

'This problem can be considered as a variant of the homing problem. A discussion of the general homing
problem with a -signature- based" solution can be found in[l 1].



The position of a point (xp, yp) is expressed by

Xp = ClXI + C3 .2 + C4

yP = d2yI (14)

where the coefficients are given by

sP sin(a - -)

sin a

C3 = s (15)
s tsin s

C4 
= tP

s sin a
d2 = SP

The step performed by the robot is determined by
Cl a,

6 = -- - -- (16)
C3  a 3

That is,
s sin(o - o) ssin(a - 0)

smn = =-ssina(cot0- cot0) (17)sin o sin 0

The robot should now move so as to reduce the absolute value of 6. The direction of motion
depends on the sign of a. The robot can deduce the direction by moving slightly to the side
and checking if this motion results in an increase or decrease of &. The motion is defined as
follows. The robot moves to the right (or to the left, depending on which direction reduces 11611)
by a step Ax.

A new image P,, is now acquired. and the fixated point is located in this image. Denote
it. new position by x,. Since the motion is parallel to the image plane the depth values of the

point in the two views. Pp and P,. are identical. We now watit to rotate the camera so as to
return the fixated point to its original position. The angle of rotation, 3, can be deduced from
the equation

XP = x,, cos 13 + sin 13 (18)

This equation has two solutions. We chose the one that counters the translation (namely, if
translation is to the right, the camera should rotate to the left), and that keeps the angle of
rotation small. In the next time step the new picture P, replaces Pp and the procedure is
repeated until 6 vanishes. The resulting path is circular around the point of focus.

Once the robot arrives at a position for which b = 0 (namely. its line of sight coincides
with that of the target image. and o = 0) it should now advance forward or retreat backward
to adjust its position along the line of sight. Several measures can be used to determine the
direction of motion, one example is the term c1l/a which satisfies

cl _ SI) (19)
(L1  S P

when the two lines of sight coincide. The objective at this stage is to bring this measure to 1.

9



4 Handling Perspective Distortions

The linear combination scheme presented above accurately handles changes in viewpoint assum-

ing the images are obtained under weak perspective projection. Error analysis and experimental

results demonstrate that in many practical cases this assumption is valid. In cases where per-

spective distortions are too large to be handled by a weak perspective approximation, matching

between the model and the image can be facilitated in two ways. One possibility is to avoid

cases of large perspective distortion by augmenting the library of stored models with additional

models. In a relatively dense library there usually exists a model that is related to the image
by a sufficiently small transformation avoiding such distortions. The second alternative is to

improve the match between the model and the image using an iterative process. In this section

we consider the second option.

The suggested iterative process is based on a Taylor expansion of the perspective coordi-

nates. As described below, this expansion results in a polynomial consisting of terms each

of which can be approximated by linear combinations of views. The first term of this series

represents the orthographic approximation. The process resembles a method of matching 3D

points with 2D points described recently by DeMenthon and Davis [3]. In this case. however,

the method is applied to 2D models rather than 3D ones. In our application the 3D coordinates

of the model points are not provided; instead they are approximated from the model views.

An image point (x,y) = (fX/Z, fY/Z) is the projection of some object point, (XY'.Z)in

the image. where f denotes the focal length. Consider the following Taylor expansion of 1/Z

around some depth value Z 0 :

f (k)(Z0 ) (Z _Z0 )kZ" = k -Z
k=O

I + ( _ )k (Z -Zo)k
= (k - 1)! Z(20)

The Taylor series describing the position of a point x is therefore given by

ý_'V~~ L-V +r (-1~ Z - Zo (1
S Z- E= (k -- 1)! Zo('j

Notice that the zero term contains the orthographic approximation for x. Denote by A(k) the
kth term of the series:

A(k) =f.\" (-l)k (Z -Zo k (2

- ( - 1)! Zo (22)

A recursive definition of the above series is given below.

10



Initialization:
(0) (0) fx

Z0

Iterative step:

A(k) _ Z- Zo z4(k-1)

(k - 1)Zo

X(k) - x(k-1) +A(k)

where XAk) represents the kth order approximation for x, and A(k) represents the highest order

term in x(k).

According to the orthographic approximation both X and Z can be expressed as linear com-

binations of the model views (Eq. (4)). We therefore apply the above procedure, approximating
X and Z at every step using the linear combination that best aligns the model points with the

image points. The general idea is therefore the following. First, we estimate x(°) and A(O) by
solving the orthographic case. Then at each step of the iteration we improve the estimate by
seeking the linear combination that best estimates the factor

Z - Zo x - (k-i)T - 2 (23)
(k - 1)ZO A(k-1)

Denote by x E R' the vector of image point coordinates, and denote by

P = [xl,ylx2, 11 (24)

an n x 4 matrix containing the position of the points in the two model images. Denote by
p+ = (pTp)-lpT the pseudo-inverse of P (we assume P is overdetermined). Also denote

by a(k) the coefficients computed for the kth step. Pa(k) represents the linear combination

computed at that step to approximate the X or the Z values. Since at every step Zo, f, and
k are constant they can be merged into the linear combination. Denote by x(k) and A(k) the
vectors of computed values of x and A at the kth step. An iterative procedure to align a model

to the image is described below.

Initialization:
Solve the orthographic approximation, namely

a(°) = P+x

x[U_ A(o) = pa(°)

Iterative step:

=k) (x xjk-1))-A(k-1)

ak) - p+q(k)

. (k) -(pa~k))&(k-1)

x(k) + x(k-1 +A(k)

11



where the vector operations E and - are defined as

u®v = (ulvi,...,u~vn)
u~v =

V1  V

5 Projection Model - Error Analysis

In this section we estimate the error obtained by using the linear combination method. Tile
method assumes a weak perspective projection model. We compare this assumption with the
more accurate perspective projection model.

A point (X, Y, Z) is projected under the perspective model to (z, y) = (fX/Z, fY/Z) in the
image, where f denotes the focal length. Under our weak perspective model the same point
is approximated by (i, ) = (sX,sY) where s is a scaling factor. The best estimate for s, the
scaling factor. is given by s = f/Zo. where ZO is the average depth of the observed environment.
Denote the error by

E = i - xJ (25)

The error is expressed by

E = fX(- - ) (26)
Zo ZI

Changing to image coordinates

E= 1Z( 1 ) (27)E= z(o Z

or z
E = lxi I- To 1 (28)

The error is small when the measured feature is close the optical axis, or when our estimate
for the depth. Z0 . is close to the real depth, Z. This supports the basic intuition that for
images with low depth variance and for fixated regions (regions near the center of the image),
the obtained perspective distortions are relatively small, and the system can therefore identify
the scene with high accuracy. Figures 1 and 2 show tlhe depth ratio Z/Zo as a function of x for
S= 10 and 20 pixels. and Table I shows a number of examples for this function. The allowed
depth variance. Z/Zo. is computed as a function of x and the tolerated error, c. For example,
a 10 pixel error tolerated in a field of view of up to ±50 pixels is equivalent to allowing depth
variations of 20%. From this discussion it is apparent that when a model is aligned to the image
the results of this alignment should be judged differently at different points of the image. Tile
farther away a point is from the center the more discrepancy should be tolerated between the
prediction and the actual image. A five pixel error at position z = 50 is equivalent to a 10 pixel
error at position x = 100.

So far we have considered the discrepancies between the weak perspective and the perspec-
tive projections of points. The accuracy of the LC scheme depends on the validity of the weak
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x\E 5 10 15 20
25 1.2 1.4 1.6 1.8
50 1.1 1.2 1.3 1.4
75 1.07 1.13 1.2 1.27

100 1.05 1.1 1.15 1.2

Table 1: Allowed depth ratios, T" as a function of z (half the width of the field considered)
and the error allowed ((. in pixels).

perspective projection both in the model views and for the incoming image. In the rest of this
section we develop an error term for the LC scheme assuming that both the model views and
the incoming image are obtained by perspective projection.

The error obtained by using tlhe LC scheme is given by

E = Ix - ax, - by, - cx 2 - dl (29)

Since the scheme accurately predicts the appearances of points under weak perspective projec-
tion. it satisfies

.i = ail - b~l - c. 2 - d (30)

where accented letters represent orthographic approximations. Assume that in the two model
pictures the depth ratios are roughly equal:

4~' ZOI Z 02 (31)zI Zo, 7o22" - 2l -2"231

(This condition is satisfied. for example. when between the two model images the camera only
translates along the image plane.) Using the fact that

fX f. Zo _ (32)
z (32)2 ZoZ 2

we obtain

E = Ix - a, - by, - CX2 - dl

2: "0 '- -Z ý" ' - -d

. Zo ZAI ZI
=(ail - b-l - Ci2) -• - d

z Z'%I

= - - (!- (:13)
z14
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=t(Lu -'ý-g) - d(Z'"- )

ZO ýtf + Idl ZM -1
Z ZM Z-1_I I± zO

T'he error therefore depends on two terms. The first gets smaller as the image points get closer
to the center of tile frame and as the difference between the depth ratios of the model and the
image gets smaller. The second gets smaller as the translation component gets smaller and as
the model gets close to orthographic.

Following this analysis. weak perspctive can be used as a projection model when the depth
variations in the scene are relatively low and when the system concentrates on the center part
of the image. We conclude that. by fixating on distinguished parts of the environment. the
linear combinations scheme call be used for localization and positioning.

6 Imposing Constraints

Localization and positioning require a large memory and a great deal of on-line computation.
A large number of models must be stored to enable the robot to navigate and manipulate
in relatively large and complicated environments. The computational cost of model-image
comparison is high. and if context (such as path history) is not available the number of required
comparisons may get very large. To reduce this computational cost a number of constraints may
be employed. These constraints take advantage of the structure of the robot, the properties of
indoor environments, and the natural properties of the navigation task. This section examines
some of these constraints.

One thing a system may attempt to do is to build the set of models so as to reduce the
effect of perspective distortions in order to avoid performing iterative computations. Views
of the environment obtained when the system looks relatively deep into the scene usually
satisfy this condition. When perspective distortions are large the system may consider modeling
subsets of views related by a translation parallel to the image plane (perpendicular to the line
of sight ). In this case the depth values of the points are roughly equal across all images
considered. and it can be shown that novel views can be expressed by linear combinations of
two model views even in the presence of large perspective distortions. This becomes appatrent
frori the following derivation. Let ( .Y,. Y,. Z,). I < i < n be a point projected in the image
to (.r,.y,) = (f.1,/Z,.fY,/ZJ. and let (2,y) be the projected point after applying a rigid

transformation. Assuming that Z: = Z, we obtain

Z,x: = rl.X, + r 212, + r 3 Z, + t,

Z,y,= r 21 -, + r221; + r 23 Z, + tI (34)

Dividing by Z, we obtain

x', - fI " + 'rl2Y, + 7"3 + t"
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1a

y, = r 2 Ix, + r22yi + r23 + ty,, (35)

Rewriting this in vector equation form gives

x' = rI 1 x + r 12 y + r131 + trzz-

y' = r21X + r 22 Y + r 23 1 + tyz-1  (36)

where x. y, x'. and y' are the vectors of xi, y•, x,, and yt values respectively, 1 is a vector
of all Is, and z- 1 is a vector of lIZ, values. Consequently, as in the weak perspective case.
novel views obtained by a translation parallel to the image plane can be exp'.-sed by linear
combinations of four vectors.

An indoor environment usually provides the robot with a flat, horizontal support. Conse-
quently. the motion of the camera is often constrained to rotation about the vertical (Y) axis
and to translation in the XZ-plane. Such motion has only three degrees of freedom instead of
the six degrees of freedom in the general case. Under this constraint fewer correspondences are
required to align the model with the image. For example, in Eq. (4) (above) the coefficients
a, = II = b3 = b4 = 0. Three points rather than four are required to determine the coefficients
by solving a linear system. Two. rather than three, are required if the quadratic constraints are
also considered. Another advantage to considering only horizontal motion is the fact that this
motion constrains the possible epipolar lines between images. This fact can be used to guide
the task of correspondence seeking.

Objects in indoor environments sometimes appear in roughly planar settings. In particular,
the relatively static objects tend to be located along walls. Such objects include windows.
shelves, pictures. closets and tables. When the assumption of orthographic projection is valid
(for example. when the robot is relatively distant from the wall, or when the line of sight is
roughly perpendicular to the wall) the transformation between any two views can be described
by a 2D affine transformation. The dimension of the space of views of the scene is then reduced
to three (rather than four). and Eq. (4) becomes

x' = (aLx, + a 2yI + a41

y' = bixi + b2y, + b4 1 (37)

(a: = b3 = 0.) Only one view is therefore sufficient to model the scene.

Most office-like indoor environments are composed of rooms connected by corridors. Navi-
gating in such an enviroutneut involves maneuvering through the corridors, entering and exiting

lie roomis. Not all pointb in much all ejivironnient are equally important. Junctions, places where
the robot faces a number of options for changing its direction, are more important than other
places for navigation. In an indoor environment these places include the thresholds of rooms
and the beginnings and ends of corridors. A navigation system would therefore tend to store
miore models for these points than for others.

One important property shared b*y many junctions is that they are confined to relatively
small areas. Consider for example the threshold of a room. It is a relatively narrow place
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that separates the room from the adjacent corridor. When a robot is about to enter a room.
a common behavior includes stepping through the door, looking into the room, and identifying
it before a decision is made to enter the room or to avoid it. The set of interesting images for
this task includes the set of views of the room from its entrance. Provided that thresholds are
niarrow these views are related to each other almost exclusively by rotation around the vertical
axis. Under perspective projection. such a rotation is relatively easy to recover. The position
of points in novel views can be recovered from one model view only. This is apparent from
the foMowing derivation. Consider a point p = (X,Y,Z). Its position in a model view is given
bY (z,y) = (fX/Z,fY/Z). Now, consider another view obtained by a rotation R around tile
camera. The location of p in the new view is given by (assuming f = 1)

(X,. Y,) r(l. + r121 + r 13 Z r 21 X + r22Y + r 23 Z (38)

1'31.X + r3 2 Y + r 33 Z r 3 1 X + r 32Y + r 3 3 Z

implfving that
W Y' IIx+ rl2Y+ rI r 2 1x+r 22 Y+r 23 ) (39)

(',y') = (r 3 1x + r32 Y + r3 3 r3 1 Zr + r 32 Y + r33

D)epth is therefore not a factor in determining the relation between the views. Eq. (39) becomes
even simpler if only rotations about the Y-axis are considered:

X Cos + silla Y )(40)
-x sin o + coso' -xsina + cosa

where o is the angle of rotation. hII this case a can be recovered merely from a single corre-
.po i)1,,ence.

7 Experiments

The LC method was implemented and applied to images taken in an indoor environment.
Images of t wo offices. A and B. that have similar structures were taken using a Panasonic camera
with a focal length of 700 pixels. Senii-static objects, such as heavy furniture and pictures. were
used to distinguish between the offices. Figure 3 shows two model views of office A. The views
were taken at a distance of about 4mi from the wall. Correspondences were picked manually.
I he results of aligning the model views to images of the two offices are presented in Figure 4.

The left image contains an overlai of a predicted image (the thick white lines), constructed by
linearly combining the two views, and an actual image of office A. A good match between the
two was achieved. Tile right image contains an overlay of a predicted image constructed from
a model of office B and an image of office A. Because the offices share a similar structure the
static cues (the wall corners) were perfectly aligned. The semi-static cues, however, did not
ziatch any features in the image.

Figure 5 shows the matching of the model of office A with an image of the same office ob-
taimed by a relatively large motion forward (about 2m) and to the side (about 1.5mi). Although
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Figure 3: Two model view~s of office A.

Figrure -4: Matching a model of office A to ani iiuage of office A (left). and matching a model of
office B to the -,aine iniage (righit)

Figure 5: \latching a model of office A to an image of the same office obtained by a relatively
large motion forw~ard and to the right.
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Figure 6: Two model views of a corridor.

. .. . . . .. .... .

Figure 7: Matching the corridor model with two images of the corridor. The right image was
obtained by a relatively large motioin forward (about half of the corridor length) and to the
right.

the distances are relative lv short most perspective distortions are negligible, and a good match
between the model and the Image is obtained.

Another set of images was taken in a corridor. Here. because of the deep structure of
the corridor, perspective distortions are noticeable. Nevertheless. the alignment results still
demionstrate an accurate inatch ini large portionis of the image. Figure 6 shows two model views
of tihe corridor. Figure 7 (left) shows an overlay of a linear combination of the model views
with an image of the corridor. It can be seemi that the parts that are relatively distant align
perfectly. Figure 7 (right) shows the matchting of the corridor model with an image obtained by
a relatively large inotiout (about half of the corridor length). Because of perspective distortionis
the relatively Ileai feat iiie•, i1m loliger idigii (e.g.. the near door edges). The relatively far edges.
however, still match.

The next experiment shows the application of the iterative process presented in Section -4
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in cases where large perspective distortion were noticeable. Figure 8 shows two model views.
and Figure 9 shows the results of matching a linear combination of the model views to an
image of the same office. In this case, because the image was taken from a relatively close
distance, perspective distortions cannot be neglected. The effects of perspective distortions can
be noticed on the right corner of the board, and on the edges of the hanger on the top right.
Perspective effects were reduced by using the iterative process. The results of applying this
procedure after one and three iterations are shown in Figure 10.

The experimental fesults demonstrate that the LC method achieves accurate localization in
many cases, and that when the method fails because of large perspective distortions an iterative
computation call be used to improve the quality of the match.

8 Conclusions

A method of localization and positioning in all indoor environment was presented. The method
is based on representing the scene as a set of 2D views and predicting the appearance of novel
views by linear combinations of tile model views. The method accurately approximates the
appearances of scenes under weak perspective projection. Analysis of this projection as well
as experimental results demonstrate that in many cases this approximation is sufficient to
accurately describe the scene. When tlhe weak perspective approximation is invalid, either a
larger number of models can be acquired or an iterative solution can be employed to account
for the perspective distortions.

The method presented in this paper has several advantages over existing methods. It uses
relatively rich representations: the representations are 2D rather than 3D, and localization can
be done from a single 2D view only. The same basic method is used in both the localization
and positioning problems. and a simple algorithm for repositioning is derived from this method.
Future work includes handling the problem of acquisition and maintenance of models, develop-
ing efficient and robust algorithms for solving the correspondence problem. and building maps
using visual input.

Appendix

In this appendix we derive the explicit values of the coefficients of the linear combinations for the
case of horizontal motion. Consider a point p = (x, y. z) that is projected by weak perspective
to three images, P., P2 . and P'. P2 is obtained from P1 by a rotation about the Y-axis by all
angle a. translation t,n. and scale factor ,. and P' is obtained from P, a rotation about the
)*-axis by anl angle 6. translation 1P and scale sp. The position of p in the three images is given
by

(x'.yl) = (.,Y)
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Figure 8: Two model views of office C.

Figure 9: Matching the model to an image obtained by a relatively large motion. Perspective
distortions can be seen in the table. the board, and the hanger at the upper right.

....... .... . ..........

Figure 10: The results of applying the iterative process to reduce perspective distortions after
one (left) and three (right) iterations.
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("2,y2) = (SmXCOSQ+Smzsina+tm,smy)

(x',y') = (spxcosO+spzsinO+tp,spy)

The point (x', y') can be expressed by a linear combination of the first two points:

X = alxl X +a 2x 2 + a 3

y' = by 1

Rewriting these equations we get

sPxcosO + sPzsinO + t1 = alx + a2(smxcosa + smzsina + tm) + a3

s5y = by

Equating the values for the coefficients in both sides of these equations we obtain

SPCOS -= aI + a2,smCOsQ

SP sin 0 = a2sm sin a

1p = a2tm + a 3

Sp = b

and the coefficients are therefore given by

sP, sin(a - 9)
sin a

(13 = s, sin 0
sm sin a

t•s•, si n aU14 = tP sPi9

•SM Sill a

b = sp
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